以陈景润的成就

以陈景润的成就

永利 1

永利 2

有人说,陈景润并没有最终解决哥德巴赫猜想,应该不算有这样的获奖资格吧。说到这里,我们再看另外一个重大猜想的证明,是只要推进一步,成果就获得了一次菲尔兹奖。这就是庞加莱猜想的证明历程。

陈景润,1933年出生在福建省福州市仓山区,中国着名解析数论专家。1973年在《中国科学》发布了论文《表大偶数为一个素数及一个不超过二个素数的乘积之和》,也就是哥德巴赫猜想证明中的1+2。此项工作随即被国际认可,国际上把这项成果称为陈氏定理。陈景润先生也被邀请到国际数学家大会上做45分钟的报告,虽然最后未能成行。

如果要说到是否可以获得诺贝尔奖,也就是获得菲尔兹奖,我们来考察一下,陈景润的条件,1973年,陈景润发表成果的时候刚好40岁,这是菲尔兹奖获奖者年龄的底线了,陈景润符合条件。再来分析一下陈景润的工作重要性,首先陈景润的方法不是他独创,筛法古已有之。到了20世纪,人们对筛法做了突飞猛进的改造,使之能够在素数问题上大放异彩。陈景润用到的加权筛法,其实也不是他的独创,而是在这个方法上一定程度改造了。正是用了这个方法,他达到了别人没有达到的成就,走得更远,从1+5,1+4,最终到达1+2,这里离最后的解决只差一步。

1961年,美国数学家史提芬·斯梅尔采用十分巧妙的方法绕过三、四维的困难情况,证明了五维以上的庞加莱猜想,获得1966年菲尔兹奖。

1904年,庞加莱猜想提出之后,在将近50年内,没有任何实质性的证明或者进展。于是有人提出曲线证明的途径,先来尝试一下更高维的猜想是否正确,层层推进再说。

与此相比,陈景润的成果就显得沉闷得多,没有提出过新的数学技术,在某个不太重要的问题上上下求索,不是说这种精神不值得提倡,而是说,这些工作的意义明显没有前面的那几位证明庞加莱猜想道路上的数学家重要。即使当时国际上有人注意到陈景润的工作是否值得菲尔兹奖,恐怕最后的获奖者也不会是他。

回答这个问题之前,我们先来了解一下陈景润的生平,以及他最重要的学术成就。

永利,然而,相对于庞加莱猜想来说,哥德巴赫猜想猜想的影响力要小的多,并且这些取得阶段性成就的获奖者都提出过新的方法来解决问题,虽然他们的工作没有到达最终的目的,这仍然不影响他们工作的伟大。

1981年美国数学家麦克·傅利曼(MichaelFreedman)证明了四维猜想,获得1983年菲尔兹奖。当然最终的解决这个问题的俄罗斯狂人佩雷尔曼也当之无愧地获得了菲尔兹奖,可人家不去。

永利 3

永利 4

网站地图xml地图